skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bouzolin, Dan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Additively manufactured thermoplastic polymers, such as polylactic acid (PLA), hold significant promise for sustainable engineering structures, including wind turbine blades. Upscaling these structures beyond the limitations of 3D printer build volumes is a challenge; fusion joining presents a potential solution. This paper introduces a displacement-controlled resistance welding process for PLA, as an alternative to the typical force controlled methods. We investigated the bonding quality of resistance-welded and adhesive-bonded PLA beams through three-point bending and measured the surface deformations using digital image correlation. Different metal meshes (30 %/0.11 mm Ni–Cu, 34 %/0.07 mm Ni–Cu, and 36 %/0.25 mm Co–Ni) served as heating elements. The process parameters were varied for the 34 %/0.07 mm Ni–Cu mesh to identify an optimum set of parameters. Results showed that this optimized displacement-controlled welding achieved 94 % of the original strength of monolithic samples. This indicates that the new welding process not only ensures high quality bonding and fine surface finishing but also promotes sustainability, recyclability, and economic efficiency in various polymer and composite structural applications. 
    more » « less